回归问题的典型指标是均方根误差(RMSE)。均方根误差测量的是系统预测误差的标准差。例如,RMSE 等于 50000,意味着,68% 的系统预测值位于实际值的 50000 美元以内,95% 的预测值位于实际值的 100000 美元以内(一个特征通常都符合高斯分布,即满足 “68-95-99.7”规则:大约68%的值落在 1σ 内,95% 的值落在 2σ 内,99.7%的值落在 3σ 内,这里的 σ 等于50000)
In statistics, the 68–95–99.7 rule, also known as the empirical rule, is a shorthand used to remember the percentage of values that lie within a band around the mean in a normal distribution with a width of two, four and six standard deviations, respectively; more accurately, 68.27%, 95.45% and 99.73% of the values lie within one, two and three standard deviations of the mean, respectively.
在实际应用上,常考虑一组数据具有近似于正态分布的概率分布。若其假设正确,则约 68% 数值分布在距离平均值有 1 个标准差之内的范围,约 95% 数值分布在距离平均值有 2 个标准差之内的范围,以及约 99.7% 数值分布在距离平均值有 3 个标准差之内的范围。称为 “68-95-99.7法则”或”经验法则”.