在使用spark处理数据的时候,大多数都是提交一个job执行,然后job内部会根据具体的任务,生成task任务,运行在多个进程中,比如读取的HDFS文件的数据,spark会加载所有的数据,然后根据block个数生成task数目,多个task运行中不同的进程中,是并行的,如果在同一个进程中一个JVM里面有多个task,那么多个task也可以并行,这是常见的使用方式。
考虑下面一种场景,在HDFS上某个目录下面有10个文件,我想要同时并行的去统计每个文件的数量,应该怎么做? 其实spark是支持在一个spark context中可以通过多线程同时提交多个任务运行,然后spark context接到这所有的任务之后,通过中央调度,在来分配执行各个task,最终任务完成程序退出。
下面就来看下如何使用多线程提交任务,可以直接使用new Thread来创建线程提交,但是不建议这么做,推荐的做法是通过Executors线程池来异步管理线程,尤其是在提交的任务比较多的时候用这个会更加方便。
1 | import java.util.concurrent.{Callable, Executors, Future} |